首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   10篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   37篇
金属工艺   2篇
机械仪表   3篇
建筑科学   2篇
能源动力   1篇
轻工业   8篇
无线电   8篇
一般工业技术   25篇
自动化技术   11篇
  2023年   2篇
  2021年   6篇
  2020年   8篇
  2019年   11篇
  2018年   12篇
  2017年   7篇
  2016年   12篇
  2015年   8篇
  2014年   9篇
  2013年   8篇
  2012年   4篇
  2011年   9篇
  2010年   1篇
  2009年   1篇
  1988年   1篇
排序方式: 共有99条查询结果,搜索用时 46 毫秒
11.
Investigating progressive collapse of tall structures under beam removal scenarios after earthquake is a complex subject because the earthquake damage acts as an initial condition for the subsequent scenario. An investigation is performed here on a 10 story steel moment resisting structure designed to meet the life safety level of performance when different beam removal scenarios after earthquake are considered. To this end, the structure is first subjected to the design earthquake simulated by Tabas earthquake acceleration. The beam removal scenarios are then considered at different locations assuming that both ends connections of the beam to columns are simultaneously detached from the columns; thus the removed beam falls on the underneath floor with an impact. This imposes considerable loads to the structure leading to a progressive collapse in all the scenarios considered. The results also show that the upper stories are much more vulnerable under such scenarios than the lower stories. Hence, more attention shall be paid to the beam-to-column connections of the upper stories during the process of design and construction.  相似文献   
12.
Brain source imaging based on EEG aims to reconstruct the neural activities producing the scalp potentials. This includes solving the forward and inverse problems. The aim of the inverse problem is to estimate the activity of the brain sources based on the measured data and leadfield matrix computed in the forward step. Spatial filtering, also known as beamforming, is an inverse method that reconstructs the time course of the source at a particular location by weighting and linearly combining the sensor data. In this paper, we considered a temporal assumption related to the time course of the source, namely sparsity, in the Linearly Constrained Minimum Variance (LCMV) beamformer. This assumption sounds reasonable since not all brain sources are active all the time such as epileptic spikes and also some experimental protocols such as electrical stimulations of a peripheral nerve can be sparse in time. Developing the sparse beamformer is done by incorporating L1-norm regularization of the beamformer output in the relevant cost function while obtaining the filter weights. We called this new beamformer SParse LCMV (SP-LCMV). We compared the performance of the SP-LCMV with that of LCMV for both superficial and deep sources with different amplitudes using synthetic EEG signals. Also, we compared them in localization and reconstruction of sources underlying electric median nerve stimulation. Results show that the proposed sparse beamformer can enhance reconstruction of sparse sources especially in the case of sources with high amplitude spikes.  相似文献   
13.
The mixing performance of the oil‐in‐water dispersion system was evaluated. Using an electrical resistance tomography system composed of two measuring planes, the effect of parameters such as impeller type, impeller speed, oil type, and oil volume fraction on the mixing performance through axial mixing indices were explored. The oil type and the oil volume fraction were identified as the most influential factors on the mixing index. Castor oil, with the highest viscosity of the tested oils, was found as the most difficult oil to disperse. The Scaba impeller was the most efficient impeller in dispersing oil in water. The interactions between oil type and impeller type as well as between impeller speed and oil type, had the greatest impact on the mixing index.  相似文献   
14.
15.
16.

We propose a modified Fitzhugh-Nagumo neuron (MFNN) model. Based on this model, an integer-order MFNN system (case A) and a fractional-order MFNN system (case B) were investigated. In the presence of electromagnetic induction and radiation, memductance and induction can show a variety of distributions. Fractional-order magnetic flux can then be considered. Indeed, a fractional-order setting can be acceptable for non-uniform diffusion. In the case of an MFNN system with integer-order discontinuous magnetic flux, the system has chaotic and non-chaotic attractors. Dynamical analysis of the system shows the birth and death of period doubling, which is a sign of antimonotonicity. Such a behavior has not been studied previously in the dynamics of neurons. In an MFNN system with fractional-order discontinuous magnetic flux, different attractors such as chaotic and periodic attractors can be observed. However, there is no sign of antimonotonicity.

  相似文献   
17.
The effect of ion‐exchange on the fracture behavior and the threshold load is investigated for radial crack initiation resulting from cube‐corner indentation. Both tin and air sides of the sodium aluminosilicate float glass are considered. The threshold load and mechanical properties are experimentally measured by nanoindentation. A qualitative explanation of crack initiation is developed by analyzing the stresses at the indentation site. The ion‐exchanged glasses show a lower threshold load for radial crack initiation with a cube‐corner indenter than the raw glass, and this is due to a higher crack driving stress for ion‐exchanged glasses. However, the compressive stress on the surface of the ion‐exchanged glasses can inhibit the expanding of the radial cracks. The air side always shows higher values for the threshold load than the tin side before and after ion‐exchange, which is in accordance with the calculated crack driving stress results.  相似文献   
18.
A new integrated, low‐noise, low‐power, and area‐efficient multichannel receiver for magnetic resonance imaging (MRI) is described. The proposed receiver presents an alternative technique to overcome the use of multiple receiver front‐ends in parallel MRI. The receiver consists of three main stages: low‐noise pre‐amplifier, quadrature down‐converter, and a band pass filter (BPF). These components are used to receive the nuclear magnetic resonance signals from a 3 × 3 array of micro coils. These signals are combined using frequency domain multiplexing (FDM) method in the pre‐amplifier and BPF stages, then amplified and filtered to remove any out‐of‐band noise before providing it to an analog‐to‐digital converter at the low intermediate frequency stage. The receiver is designed using a 90 nm CMOS technology to operate at the main B0 magnetic field of 9.4 T, which corresponds to 400 MHz. The receiver has an input referred noise voltage of 1.1 nV/√Hz, a total voltage gain of 87 dB, a power consumption of 69 mA from a 1 V supply voltage, and an area of 305 µm × 530 µm including the reference current and bias voltage circuits. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
19.
Polymer supported reagents have become the subject of considerable and increasing interest as insoluble materials in the organic synthesis. Use of polymeric reagents simplifies routine nitration of aromatic compounds because it eliminates traditional purification. In this article, the use of readily available cross‐linked poly(4‐vinylpyridine) supported sodium nitrite, [P4‐Me] NO2, as an efficient polymeric nitrating agent in the presence of KHSO4 is described. A good range of available aromatic compounds were also subjected to nitration in the presence of [P4‐Me] NO2/KHSO4. This reagent is regioselective and chemoselective nitrating polymeric reagent for activated aromatic rings. In this procedure, the work‐up is easy, and the spent polymeric reagent is easily regenerated and reused. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
20.
A variety of aromatic compounds are nitrated under heterogeneous conditions using a polymer‐supported hydrochloric acid, [P4‐(VP)]HCl, with a polymer‐supported sodium nitrite, [P4‐VP]NO2, or sodium nitrite in ethanol at room temperature with high yields. This methodology is useful for nitration of activated aromatic compounds. In this procedure, the work‐up is very easy, and the spent polymeric reagent can be regenerated and reused. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号